Fast load change power plants vs. high efficiency






Here's an actual example about increasing costs and CO2 emissions by ignoring a profitability transition.

Some decades ago, nobody imagined that sun and wind energy could deliver more electricity than all the caloric power plants together. Let's look back into this time to understand the historic context:

There are these peaker power plants; they work mainly at midday. They can change the load fast, so no problem replacing them on a sunny day with solar electricity. Medium-load power plants are also no problem. But maybe we will have so much photovoltaic power in the future that we will even have to switch off the base power plants. But these base load power plants have too slow a decrease to be down until midday and too slow an increase to have full power at sunset. So base load power plants are an enemy of the energy transition; they congest the grid! Really, statements like this had been made by high-ranking Green politicians in Germany even in 2025. The conclusion: All new power plants have to be for fast load change.

Who killed the electric car at the beginning of the 20th century? The lead-acid battery. My Tesla Y with lead-acid batteries would have 20 kWh capacity and 100 km range, 40 kW peak power, and the battery would need to be replaced every 6,000 km. No joke, painful experience at my first electric scooter test, 2006 to 2009 (1).

The same goes for any thoughts towards grid-scale batteries. So the ideal of the fast-changing power plant was born to deal with the changes in photovoltaic and wind energy.

This was the historic context about 3 decades ago. It is shocking that we are still in the first phase of the energy transition. There are 3 phases of using renewable energy from the sun and wind:
  • Random, the sun shines or the wind blows, and we reduce the output of caloric power plants.
  • 24-electricity, stable supply in the range of a day; batteries make a cooperation between sun, wind, and caloric power plants possible.
  • 24×365 electricity, a stable supply for every day of the year, and the fossil fuel for caloric power plants is replaced by power to X.
In the first phase, the idea is, whenever the sun shines or the wind blows, we decrease the output of caloric power plants. In the other direction, to increase the output of caloric power plants as soon as it becomes dark or windless. That was the time when the wish for all power plants to be able to make fast load changes originated.

This method has a limit: it is not possible to switch off more power plants than are just running. Because of this limit and because people were unwilling to think ahead, 70 GW was cited as the expansion target for photovoltaics in Germany for many years. They did not even think that renewable energy has to evolve from random to 24-electricity. Why? Lithium batteries were at this time too expensive for this task, and they were not convinced that this could change. This is despite all the experiences with price decreases in emerging industries.

24-electricity is a cooperation between renewable energy and caloric power plants. There is a weather and demand forecast: the next day we split production on 80% renewable and 20% caloric power plants. When there are 10 caloric power plants, let just 2 of them run with the highest efficiency. All the different yields of photovoltaic and wind power during the day are flattened by batteries. Surprise, the demand for fast load changes at power plants is gone. The batteries make such a slow load change possible that even the slowest-changing base load power plant can follow.

Let's look at the current situation at new power plants to be built in Germany.

Fast load change power plants vs. high efficiency
Who killed the electric car at the beginning of the 20th century? The lead-acid battery. The same goes for any thoughts towards grid-scale batteries in the past.

10% less CAPEX 10% less natural gas to burn is already a huge difference for the efficiency-optimized battery version. But thinking in the past, they continue to talk about fast load change power plants.
-250% CO2 emission until 350 ppm are reached again -250% CO2 emission until 350 ppm are reached again
Less CO2 emission is much too little, even zero emission is insufficient. Only a planet renovation with large-scale CO2 filtering and splitting from the atmosphere will help.


Filtering and splitting CO2 from the atmosphere Filtering and splitting CO2 from the atmosphere
Due to their enormous space and water requirements, plants are unsuitable for the necessary reduction of the CO2 content in the atmosphere. There is no room for 37 million km² of growing forest.


390 PWh/year electricity for CO2 from the atmosphere 390 PWh/year electricity for CO2 from the atmosphere
Reduce the CO2 content with Power to Carbon, generate fuels with Power to Liquid and use CO2 for indoor plant cultivation to replace large-scale agriculture.


Carbon fiber becomes standard material for construction Carbon fiber becomes standard material for construction
If we filter the 33.1 Gt CO2 emission of 2019 from the atmosphere and split it into C and O, we get 9 billion tons of carbon. What to do with it?


IPCC Report 2021: “Net Zero Emissions” Fairy Tale and its Devastating Consequences IPCC Report 2021: “Net Zero Emissions” Fairy Tale and its Devastating Consequences
Constantly contradicting itself, the IPCC 2021 report adheres to the completely inadequate “net zero emissions” target. This can only be thinking prohibitions.


Green dogmatism and the destruction of the German photovoltaic industry Green dogmatism and the destruction of the German photovoltaic industry
How the dogma “the demand for electricity will decrease” led to extremely wrong targets, which led to the destruction of the German photovoltaic industry in 2013.


Why Germany is failing in the energy transition Why Germany is failing in the energy transition
In the first decade of the new millennium, Germany was the great role model in the energy transition, why, on the other hand, the current EEG policy leads to disaster.


Sri Lanka crisis 2022 example of oil exit failures Sri Lanka crisis 2022 example of oil exit failures
Hit hard by the breakdown in tourism caused by COVID-19, the higher price of oil comes as the next blow. The serious failures of the industrialized countries.


Destructive cult prevents functional energy transition Destructive cult prevents functional energy transition
A horror novel about a world without renewable energy and recycling delayed a workable energy transition and thus effective climate protection by decades.


Functional energy transition vs. German energy transition Functional energy transition vs. German energy transition
We have to denounce very hard the grotesque German energy transition in order to turn all the enemies of this grotesque into fans of a functional energy transition.


Paradigm changes – Profitability transitions – Culture shocks
We can neither achieve energy transition nor stop climate change if we do not constantly review all parameters and abandon unsuitable views.


Cost optimization — the key to energy transition and climate protection
Paper written for the CORP.at conference March 22 to 25 2026 in Vienna. My 2025 participation was a last-minute action, but now I have much time to prepare the paper.




  Cost optimization — the key to energy transition and climate protection


Paper written for the CORP.at conference March 22 to 25 2026 in Vienna. My 2025 participation was a last-minute action, but now I have much time to prepare the paper.

Abstract
To meet the necessary cost optimization targets, we cannot hold the energy problem separate from all other problems: another major problem is housing.


Introduction
Many imaginations about our future had been created in the past with completely different parameters. Unchecked conclusions from the past endanger our future with unbearable costs.


My personal experience with a profitability transition My personal experience with a profitability transition
Birds can fly without knowing all the terms of aerodynamics. I reacted with my design change to an ongoing “profitability transition” without knowing the term at this time.


Energy transition
The long way from random electricity from sun and wind towards 24×365 electricity. Overseen profitability transitions have to be considered as major accidents.


The GEMINI principle: double usage of land
No better solar power plant, no better housing possible on the same ground is the ultimate target of the GEMINI principle.


Energy-intensive industry
News and statements on current topics concerning the energy transition, climate protection and the necessary development towards worldwide wealth.


Agriculture: How many square meters does a human need for his food? Agriculture: How many square meters does a human need for his food?
Mankind started as hunters and gatherers. 12,000 years ago, 500,000 m² to 2,500,000 m² per human. With the agricultural revolution, the land use was reduced by 2 magnitudes.


Conclusion
News and statements on current topics concerning the energy transition, climate protection and the necessary development towards worldwide wealth.


References
News and statements on current topics concerning the energy transition, climate protection and the necessary development towards worldwide wealth.




          Fast load change power plants vs. high efficiency: Who killed the electric car at the beginning of the 20th century? The lead-acid battery. The same goes for any thoughts towards grid-scale batteries in the past. https://climate.pege.org/2026/fast-load-change.htm